67 research outputs found

    Sharp generalization error bounds for randomly-projected classifiers

    Get PDF
    We derive sharp bounds on the generalization error of a generic linear classifier trained by empirical risk minimization on randomly projected data. We make no restrictive assumptions (such as sparsity or separability) on the data: Instead we use the fact that, in a classification setting, the question of interest is really ‘what is the effect of random projection on the predicted class labels?’ and we therefore derive the exact probability of ‘label flipping’ under Gaussian random projection in order to quantify this effect precisely in our bounds

    Random projections as regularizers: learning a linear discriminant from fewer observations than dimensions

    Get PDF
    We prove theoretical guarantees for an averaging-ensemble of randomly projected Fisher linear discriminant classifiers, focusing on the casewhen there are fewer training observations than data dimensions. The specific form and simplicity of this ensemble permits a direct and much more detailed analysis than existing generic tools in previous works. In particular, we are able to derive the exact form of the generalization error of our ensemble, conditional on the training set, and based on this we give theoretical guarantees which directly link the performance of the ensemble to that of the corresponding linear discriminant learned in the full data space. To the best of our knowledge these are the first theoretical results to prove such an explicit link for any classifier and classifier ensemble pair. Furthermore we show that the randomly projected ensemble is equivalent to implementing a sophisticated regularization scheme to the linear discriminant learned in the original data space and this prevents overfitting in conditions of small sample size where pseudo-inverse FLD learned in the data space is provably poor. Our ensemble is learned from a set of randomly projected representations of the original high dimensional data and therefore for this approach data can be collected, stored and processed in such a compressed form. We confirm our theoretical findings with experiments, and demonstrate the utility of our approach on several datasets from the bioinformatics domain and one very high dimensional dataset from the drug discovery domain, both settings in which fewer observations than dimensions are the norm

    Towards large scale continuous EDA: a random matrix theory perspective

    Get PDF
    Estimation of distribution algorithms (EDA) are a major branch of evolutionary algorithms (EA) with some unique advantages in principle. They are able to take advantage of correlation structure to drive the search more efficiently, and they are able to provide insights about the structure of the search space. However, model building in high dimensions is extremely challenging and as a result existing EDAs lose their strengths in large scale problems. Large scale continuous global optimisation is key to many real world problems of modern days. Scaling up EAs to large scale problems has become one of the biggest challenges of the field. This paper pins down some fundamental roots of the problem and makes a start at developing a new and generic framework to yield effective EDA-type algorithms for large scale continuous global optimisation problems. Our concept is to introduce an ensemble of random projections of the set of fittest search points to low dimensions as a basis for developing a new and generic divide-and-conquer methodology. This is rooted in the theory of random projections developed in theoretical computer science, and will exploit recent advances of non-asymptotic random matrix theory

    Structure from randomness in halfspace learning with the zero-one loss

    Get PDF
    We prove risk bounds for halfspace learning when the data dimensionality is allowed to be larger than the sample size, using a notion of compressibility by random projection. In particular, we give upper bounds for the empirical risk minimizer learned efficiently from randomly projected data, as well as uniform upper bounds in the full high-dimensional space. Our main findings are the following: i) In both settings, the obtained bounds are able to discover and take advantage of benign geometric structure, which turns out to depend on the cosine similarities between the classifier and points of the input space, and provide a new interpretation of margin distribution type arguments. ii) Furthermore our bounds allow us to draw new connections between several existing successful classification algorithms, and we also demonstrate that our theory is predictive of empirically observed performance in numerical simulations and experiments. iii) Taken together, these results suggest that the study of compressive learning can improve our understanding of which benign structural traits – if they are possessed by the data generator – make it easier to learn an effective classifier from a sample

    Toward Large-Scale Continuous EDA: A Random Matrix Theory Perspective

    Get PDF
    Estimations of distribution algorithms (EDAs) are a major branch of evolutionary algorithms (EA) with some unique advantages in principle. They are able to take advantage of correlation structure to drive the search more efficiently, and they are able to provide insights about the structure of the search space. However, model building in high dimensions is extremely challenging, and as a result existing EDAs may become less attractive in large-scale problems because of the associated large computational requirements. Large-scale continuous global optimisation is key to many modern-day real-world problems. Scaling up EAs to large-scale problems has become one of the biggest challenges of the field. This paper pins down some fundamental roots of the problem and makes a start at developing a new and generic framework to yield effective and efficient EDA-type algorithms for large-scale continuous global optimisation problems. Our concept is to introduce an ensemble of random projections to low dimensions of the set of fittest search points as a basis for developing a new and generic divide-and-conquer methodology. Our ideas are rooted in the theory of random projections developed in theoretical computer science, and in developing and analysing our framework we exploit some recent results in nonasymptotic random matrix theory. MATLAB code is available from http://www.cs.bham.ac.uk/∼axk/rpm.zi

    How effective is Cauchy-EDA in high dimensions?

    Get PDF
    We consider the problem of high dimensional blackbox optimisation via Estimation of Distribution Algorithms (EDA) and the use of heavy-tailed search distributions in this setting. Some authors have suggested that employing a heavy tailed search distribution, such as a Cauchy, may make EDA better explore a high dimensional search space. However, other authors have found Cauchy search distributions are less effective than Gaussian search distributions in high dimensional problems. In this paper, we set out to resolve this controversy. To achieve this we run extensive experiments on a battery of high-dimensional test functions, and develop some theory which shows that small search steps are always more likely to move the search distribution towards the global optimum than large ones and, in particular, large search steps in high-dimensional spaces nearly always do badly in this respect. We hypothesise that, since exploration by large steps is mostly counterproductive in high dimensions, and since the fraction of good directions decays exponentially fast with increasing dimension, instead one should focus mainly on finding the right direction in which to move the search distribution. We propose a minor change to standard Gaussian EDA which implicitly achieves this aim, and our experiments on a sequence of test functions confirm the good performance of our new approach
    corecore